98 research outputs found

    Metabolic network percolation quantifies biosynthetic capabilities across the human oral microbiome

    Get PDF
    The biosynthetic capabilities of microbes underlie their growth and interactions, playing a prominent role in microbial community structure. For large, diverse microbial communities, prediction of these capabilities is limited by uncertainty about metabolic functions and environmental conditions. To address this challenge, we propose a probabilistic method, inspired by percolation theory, to computationally quantify how robustly a genome-derived metabolic network produces a given set of metabolites under an ensemble of variable environments. We used this method to compile an atlas of predicted biosynthetic capabilities for 97 metabolites across 456 human oral microbes. This atlas captures taxonomically-related trends in biomass composition, and makes it possible to estimate inter-microbial metabolic distances that correlate with microbial co-occurrences. We also found a distinct cluster of fastidious/uncultivated taxa, including several Saccharibacteria (TM7) species, characterized by their abundant metabolic deficiencies. By embracing uncertainty, our approach can be broadly applied to understanding metabolic interactions in complex microbial ecosystems.T32GM008764 - NIGMS NIH HHS; T32 GM008764 - NIGMS NIH HHS; R01 DE024468 - NIDCR NIH HHS; R01 GM121950 - NIGMS NIH HHS; DE-SC0012627 - Biological and Environmental Research; RGP0020/2016 - Human Frontier Science Program; NSFOCE-BSF 1635070 - National Science Foundation; HR0011-15-C-0091 - Defense Advanced Research Projects Agency; R37DE016937 - NIDCR NIH HHS; R37 DE016937 - NIDCR NIH HHS; R01GM121950 - NIGMS NIH HHS; R01DE024468 - NIDCR NIH HHS; 1457695 - National Science FoundationPublished versio

    The Human Oral Microbiome Database: a web accessible resource for investigating oral microbe taxonomic and genomic information

    Get PDF
    The human oral microbiome is the most studied human microflora, but 53% of the species have not yet been validly named and 35% remain uncultivated. The uncultivated taxa are known primarily from 16S rRNA sequence information. Sequence information tied solely to obscure isolate or clone numbers, and usually lacking accurate phylogenetic placement, is a major impediment to working with human oral microbiome data. The goal of creating the Human Oral Microbiome Database (HOMD) is to provide the scientific community with a body site-specific comprehensive database for the more than 600 prokaryote species that are present in the human oral cavity based on a curated 16S rRNA gene-based provisional naming scheme. Currently, two primary types of information are provided in HOMD—taxonomic and genomic. Named oral species and taxa identified from 16S rRNA gene sequence analysis of oral isolates and cloning studies were placed into defined 16S rRNA phylotypes and each given unique Human Oral Taxon (HOT) number. The HOT interlinks phenotypic, phylogenetic, genomic, clinical and bibliographic information for each taxon. A BLAST search tool is provided to match user 16S rRNA gene sequences to a curated, full length, 16S rRNA gene reference data set. For genomic analysis, HOMD provides comprehensive set of analysis tools and maintains frequently updated annotations for all the human oral microbial genomes that have been sequenced and publicly released. Oral bacterial genome sequences, determined as part of the Human Microbiome Project, are being added to the HOMD as they become available. We provide HOMD as a conceptual model for the presentation of microbiome data for other human body sites

    Phylogenetic diversity and temporal variation in the Spirochaeta populations from two Mediterranean microbial mats

    Get PDF
    Spirochetes represent one of the bacterial groups often observed in hydrogen- sulfide-rich layers from coastal microbial mats. However, relatively few spirochetes from these microbial mats have been described and characterized. We have used 16S rDNA phylogenetic analysis to investigate the spirochetal diversity of microbial mats from two different geographic locations in the western Mediterranean (Ebro Delta, Spain, and Camargue, France). Samples from each delta was monitored in the spring and winter over 1 to 2 year’s duration. In the sequence analysis of 332 clones derived from samples of both deltas, 42 novel phylotypes of not-yet-cultivated spirochetes belonging to the genus Spirochaeta were detected. None of the phylotypes were identified as known culturable species of Spirochaeta or previously identified phylotyepes cloned from other hypersaline microbial mat such as Guerrero Negro. Eight of the phylotypes were common to Ebro and Camargue mats, two of them, IF058 and LL066 are present both in spring and winter. Some phylotypes appeared to show seasonal variation, i.e. they were found only in the spring, but not in the winter. On the other hand, Ebro and Camargue phylotypes compared with phylotypes from Guerrero Negro grouped according to the vertical gradient of oxygen and sulfide in the mat. Some phylotypes, such as LH073, IE028, LH042 or LG013 are harbored in low H2S or H2S-O2 interface zone. In contrast, major phylotypes were detected presumably in deeper layers and they are likely to be strict anaerobes and high tolerance to H2S. The presence of spirochetes in different located microbial mats suggests that constitutes a very diverse and stable population involved in a well-integrated “symbiosis” (i.e., permanent physiological cooperation) with other guild-populations in the mats to maintain a coordinated functional and stable community

    Neisseria oralis sp. nov., isolated from healthy gingival plaque and clinical samples

    Get PDF
    A polyphasic analysis was undertaken of seven independent isolates of Gram-negative cocci collected from pathological clinical samples from New York, Louisiana, Florida and Illinois and healthy subgingival plaque from a patient in Virginia, USA. The 16S rRNA gene sequence similarity among these isolates was 99.7–100 %, and the closest species with a validly published name was Neisseria lactamica (96.9 % similarity to the type strain). DNA–DNA hybridization confirmed that these isolates are of the same species and are distinct from their nearest phylogenetic neighbour, N. lactamica. Phylogenetic analysis of 16S and 23S rRNA gene sequences indicated that the novel species belongs in the genus Neisseria. The predominant cellular fatty acids were C16 : 0, summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH) and C18 : 1ω7c. The cellular fatty acid profile, together with other phenotypic characters, further supports the inclusion of the novel species in the genus Neisseria. The name Neisseria oralis sp. nov. (type strain 6332T = DSM 25276T = LMG 26725T) is proposed

    Neisseria oralis sp. nov., isolated from healthy gingival plaque and clinical samples

    Get PDF
    A polyphasic analysis was undertaken of seven independent isolates of Gram-negative cocci collected from pathological clinical samples from New York, Louisiana, Florida and Illinois and healthy subgingival plaque from a patient in Virginia, USA. The 16S rRNA gene sequence similarity among these isolates was 99.7–100 %, and the closest species with a validly published name was Neisseria lactamica (96.9 % similarity to the type strain). DNA–DNA hybridization confirmed that these isolates are of the same species and are distinct from their nearest phylogenetic neighbour, N. lactamica. Phylogenetic analysis of 16S and 23S rRNA gene sequences indicated that the novel species belongs in the genus Neisseria. The predominant cellular fatty acids were C16 : 0, summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH) and C18 : 1ω7c. The cellular fatty acid profile, together with other phenotypic characters, further supports the inclusion of the novel species in the genus Neisseria. The name Neisseria oralis sp. nov. (type strain 6332T = DSM 25276T = LMG 26725T) is proposed

    In Vitro Cultivation of 'Unculturable' Oral Bacteria, Facilitated by Community Culture and Media Supplementation with Siderophores

    Get PDF
    Over a third of oral bacteria are as-yet-uncultivated in-vitro. Siderophores have been previously shown to enable in-vitro growth of previously uncultivated bacteria. The objective of this study was to cultivate novel oral bacteria in siderophore-supplemented culture media. Various compounds with siderophore activity, including pyoverdines-Fe-complex, desferricoprogen and salicylic acid, were found to stimulate the growth of difficult-to-culture strains Prevotella sp. HOT-376 and Fretibacterium fastidiosum. Furthermore, pyrosequencing analysis demonstrated increased proportions of the as-yet-uncultivated phylotypes Dialister sp. HOT-119 and Megasphaera sp. HOT-123 on mixed culture plates supplemented with siderophores. Therefore a culture model was developed, which incorporated 15 μg siderophore (pyoverdines-Fe-complex or desferricoprogen) or 150 μl neat subgingival-plaque suspension into a central well on agar plates that were inoculated with heavily-diluted subgingival-plaque samples from subjects with periodontitis. Colonies showing satellitism were passaged onto fresh plates in co-culture with selected helper strains. Five novel strains, representatives of three previously-uncultivated taxa (Anaerolineae bacterium HOT-439, the first oral taxon from the Chloroflexi phylum to have been cultivated; Bacteroidetes bacterium HOT-365; and Peptostreptococcaceae bacterium HOT-091) were successfully isolated. All novel isolates required helper strains for growth, implying dependence on a biofilm lifestyle. Their characterisation will further our understanding of the human oral microbiome

    Persistent infection of rhesus monkeys with ‘Helicobacter macacae’ and its isolation from an animal with intestinal adenocarcinoma

    Get PDF
    A novel helicobacter, ‘Helicobacter macacae’, was previously isolated from a colony of rhesus and cynomolgus monkeys in which diarrhoea from chronic idiopathic colitis was enzootic. A survey performed in a second colony of rhesus monkeys without a history of chronic diarrhoea determined that 57 % were faecal-culture positive for Helicobacter species. Ten years after the survey, one of the animals from which ‘H. macacae’ had been isolated, a 23-year-old, intact male rhesus monkey (Macaca mulatta), presented with partial inappetence and progressive weight loss. Subsequent evaluation of the monkey revealed anaemia, hypoproteinaemia, hypoalbuminaemia and a palpable abdominal mass. Contrast radiography suggested partial intestinal obstruction. The animal was euthanized and a diagnosis was made of intestinal adenocarcinoma of the ileocaecocolic junction with metastasis to regional lymph nodes and liver. Microaerobic culture of caecal tissue yielded a helicobacter organism identified as ‘H. macacae’ by 16S rRNA gene sequencing – the same species of bacteria isolated 10 years previously. The liver, small intestine and colon were also positive by PCR for Helicobacter species. Intestinal adenocarcinoma is the most common malignancy of aged macaques. Faeces or caecal tissue from five out of five monkeys that remained from the original cohort and that were colonized with ‘H. macacae’ in the initial survey were positive for the organism. The apparent persistence of ‘H. macacae’ in these animals, the isolation of the bacterium from animals with colitis and the recognition of the importance of inflammation in carcinogenesis raise the possibility of an aetiological role in the genesis of intestinal adenocarcinoma in aged rhesus monkeys

    The Canine Oral Microbiome

    Get PDF
    Determining the bacterial composition of the canine oral microbiome is of interest for two primary reasons. First, while the human oral microbiome has been well studied using molecular techniques, the oral microbiomes of other mammals have not been studied in equal depth using culture independent methods. This study allows a comparison of the number of bacterial taxa, based on 16S rRNA-gene sequence comparison, shared between humans and dogs, two divergent mammalian species. Second, canine oral bacteria are of interest to veterinary and human medical communities for understanding their roles in health and infectious diseases. The bacteria involved are mostly unnamed and not linked by 16S rRNA-gene sequence identity to a taxonomic scheme. This manuscript describes the analysis of 5,958 16S rRNA-gene sequences from 65 clone libraries. Full length 16S rRNA reference sequences have been obtained for 353 canine bacterial taxa, which were placed in 14 bacterial phyla, 23 classes, 37 orders, 66 families, and 148 genera. Eighty percent of the taxa are currently unnamed. The bacterial taxa identified in dogs are markedly different from those of humans with only 16.4% of oral taxa are shared between dogs and humans based on a 98.5% 16S rRNA sequence similarity cutoff. This indicates that there is a large divergence in the bacteria comprising the oral microbiomes of divergent mammalian species. The historic practice of identifying animal associated bacteria based on phenotypic similarities to human bacteria is generally invalid. This report describes the diversity of the canine oral microbiome and provides a provisional 16S rRNA based taxonomic scheme for naming and identifying unnamed canine bacterial taxa
    • …
    corecore